
[1]

UNIX & SHELL PROGRAMMING LAB MANUAL

(II YEAR – I SEMESTER)

(2019-20)

Prepared by

Sri.M.Naga Raju Ms. L. L. Praneetha

Assistant Professor Assistant Professor

GUDLAVALLERU ENGINEERING COLLEGE
(An Autonomous Institution with Permanent Affiliation to JNTUK, Kakinada)

Seshadri Rao Knowledge Village, Gudlavalleru – 521356

[2]

INSTITUTE VISION & MISSION

GUDLAVALLERU ENGINEERING COLLEGE
(An Autonomous Institution with Permanent Affiliation to JNTUK, Kakinada)

Seshadri Rao Knowledge Village, Gudlavalleru – 521356

DEPARTMENT OF INFORMATION TECHNOLOGY

Institute Vision:

To be a leading institution of engineering education and research, preparing students for leadership in their fields

in a caring and challenging learning environment.

Institute Mission:

 To produce quality engineers by providing state-of-the-art engineering education.

 To attract and retain knowledgeable, creative, motivated and highly skilled individuals whose leadership

and contributions uphold the college tenets of education, creativity, research and responsible public

service.

 To develop faculty and resources to impart and disseminate knowledge and information to students and

also to society that will enhance educational level, which in turn, will contribute to social and economic

betterment of society.

 To provide an environment that values and encourages knowledge acquisition and academic freedom,

making this a preferred institution for knowledge seekers.

 To provide quality assurance.

 To partner and collaborate with industry, government, and R&D institutes to develop new knowledge and

sustainable technologies and serve as an engine for facilitating the nation’s economic development.

 To impart personality development skills to students that will help them to succeed and lead.

 To instil in students the attitude, values and vision that will prepare them to lead lives of personal

integrity and civic responsibility.

 To promote a campus environment that welcomes and makes students of all races, cultures and

civilizations feel at home.

 Putting students face to face with industrial, governmental and societal challenges.

[3]

 DEPARTMENT VISION & MISSION

VISION

To be a centre of innovation by adopting changes in Information Technology, imparting quality education,

research to produce visionary computer professionals and entrepreneurs.

MISSION

 To provide an academic environment in which students are given the essential resources for solving real-

world problems and work in multidisciplinary teams.

 To impart value based education and research among students, particularly belonging to rural areas, for

their sustained growth in technological aspects and leadership.

 To collaborate with the industry for making the students adoptable to evolving changes in Information

Technology and related areas.

PROGRAMME EDUCATIONAL OBJECTIVES(PEOs):-

PEO1:To exhibit analytical skills in modeling and solving computing problems by applying

mathematical, scientific and engineering knowledge and to pursue their higher studies.

PEO2: To communicate effectively with multi-disciplinary teams to develop quality

software systems with an orientation towards research and development for lifelong

learning.

PEO3: To address industry and societal needs for the growth of global economy using

emerging technologies by following professional ethics.

.

[4]

PROGRAM OUTCOMES (POs)

Engineering students will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering

specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching

substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or

processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural,

societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of

experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools

including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal

and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and

environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering

practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in

multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with

society at large, such as, being able to comprehend and write effective reports and design documentation, make effective

presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management

principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in

multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long

learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

Students will be able to
13.

PSO1: Organize, maintain and protect IT Infrastructural resources.

 PSO2: Design and Develop web, mobile, and smart apps based software solutions to the real

[5]

CONTENTS

S.No List of Experiments
Page

No

1
To practice on UNIX commands: man, echo, passwd, uname, who, date, cal,

banner, tty, pwd, cd, mkdir, rmdir, ls, cp, mv, rm, cat,touch, clear, more, wc,

cmp, diff, comm, head, tail, cut, paste, sort, tr, uniq

6

2 To use file permissions 20

3 To Practice process, disk, network utilities 22

4 To practice UNIX commands on Vi Editor 25

5 Write a shell script to print the factorial of first n natural numbers. 28

6
Write a shell script to generate a multiplication table of the given number.

29

7
Write a shell script that counts the number of lines and words present in a given
file. 30

8 Write a shell script that displays the list of all files in the given directory. 31

9

Write a shell script (small calculator) that adds, subtracts, multiplies and
divides the given two integers.There are two division options: one returns the
quotient and the other returns reminder. The script requires 3 arguments: The
operation to be used and two integer numbers. The options are add (-a),
subtract (-s), multiply (-m), quotient (-c) and reminder (-r).

32

10

Write a program that takes one or more file/directory names as command line

input and reports the following information on the file: File type, Number of

links, Time of last access, Read, Write and Execute permissions.

34

11
Write a C program that illustrates uses of the opendir, readdir, and closedir
APIs. 36

12
Write a C program that counts the number of blanks in a text file using standard
I/O 37

13 Implement in C, Unix command ‘cat’ using system calls. 38

14
Write a C program that illustrates the creation of child process using fork
system call. 39

15
Write a C program that illustrates how to execute two commands concurrently
with a command pipe. 40

16 Write a C program to implement the Kill function. 41

17 Write a C program to implement the raise function. 42

18
Write a C program that displays the real time of a day every 60 seconds.

43

01
Additional Programs:

Write a shell script to display files which has read, write and execute

permissions.

44-

45

 02 Write a shell script to display the biggest number in given input numbers.
44-

45

03
Write a C program that illustrates the creation of child process using fork system call.

One process finds sum of even series and other process finds sum of odd series.

44-

45

[6]

1. To practice on UNIX commands: man, echo, passwd, uname, who, whoami, date, cal, bc, banner, tty,

pwd, cd, mkdir, rmdir, ls, cp, mv, rm, cat,touch, clear, wc, cmp, diff, comm, head, tail, cut, paste, sort, tr,

uniq

 man:

man command is used to display the user manual of any command that we can run on the terminal. It

provides a detailed view of the command which includes NAME, SYNOPSIS, DESCRIPTION,

OPTIONS, EXIT STATUS, RETURN VALUES, ERRORS, FILES, VERSIONS,

EXAMPLES, AUTHORS.

Syntax: $man [OPTION]... [COMMAND NAME]…

Input: $man man

Output:

 echo:

echo command is used to display the line of text/string that are passed as an argument. This is a built-

in command that is mostly used in shell scripts and batch files to output status text to the screen or a

file.

Syntax: $echo [option] [string]

Options:

1. \b : it removes all the spaces in between the text.

2. \n : this option creates new line from where it is used.

3. \t : this option is used to create horizontal tab spaces.

Output:

[7]

 passwd:

passwd command is used to change the user account passwords. The root user reserves the privilege

to change the password for any user on the system, while a normal user can only change the account

password for his or her own account.

Syntax: $passwd [options] [username]

 uname:

The command ‘uname‘ displays the information about the system.

Syntax: $uname [OPTION]

Options:

1. -n option: It prints the hostname of the network node(current computer).

2. -v option: It prints the version of the current kernel.

3. -o option: It prints the name of the operating system.

Output:

 who:

The who command

is used to get

[8]

information about currently logged in user on to system.

Syntax : $who [options] [filename]

The who command displays the following information for each user currently logged in to the system

if no option is provided :

1. Login name of the users

2. Terminal line numbers

3. Login time of the users in to system

4. Remote host name of the user

 Output:

 date:

date command is used to display the system date and time.

Syntax: date [OPTION]... [+FORMAT]

Options:

1. date (no option) : With no options, the date command displays the current date and time, including

the abbreviated day name, abbreviated month name, day of the month, the time separated by colons,

the time zone name, and the year.

2. List of Format specifiers used with date command:

%D: Display date as mm/dd/yy.

%d: Display the day of the month (01 to 31).

%a: Displays the abbreviated name for weekdays (Sun to Sat).

%A: Displays full weekdays (Sunday to Saturday).

%h: Displays abbreviated month name (Jan to Dec).

%b: Displays abbreviated month name (Jan to Dec).

%B: Displays full month name(January to December).

%m: Displays the month of year (01 to 12).

%y: Displays last two digits of the year(00 to 99).

%Y: Display four-digit year.

%T: Display the time in 24 hour format as HH:MM:SS.

%H: Display the hour.

%M: Display the minute.

%S: Display the seconds.

[9]

OUTPUT:

 cal:

cal command is a calendar command in Linux which is used to see the calendar of a specific month or

a whole year.
Syntax: cal [[month] year]

 Options:

 1.cal : Shows current month calendar on the terminal.

 2.cal 08 2000 : Shows calendar of selected month and year.

 3. cal 2019 : Shows the whole calendar of the year.

 4. cal -3 : Shows calendar of previous, current and next month

 Output:

[10]

 banner:

banner command is used to print the ASCII character string in large letter to standrad output.

Syntax: banner text

 Output: $banner 1234567890

 t

ty:

The ttyc

ommand

of

terminal

basically prints the file name of the terminal connected to standard input. tty is short of teletype, but

popularly known as a terminal.

Syntax: tty [OPTION].…

 Output:

 pwd:

pwd stands for Print Working Directory. It prints the path of the working directory, starting from the root.

It is a shell built-in command(pwd).

Syntax: tty [OPTION].…

 cd:

cd command is known as change directory command. It is used to change current working directory.

Syntax: $cd [directory]

[11]

 mkdir:

mkdir command allows the user to create directories.This command can create multiple directories at

once.

Syntax: mkdir [options...] [directories …]

 rmdir:

rmdir command is used remove empty directories from the filesystem.

Syntax: rmdir [options...] [directories ...]

 ls:

ls is the most widely used command in unix. ls command is used to list the contents of a directory.

Syntax: ls [options] [pathnames]

 Options:

1. ls –a:To display the hidden files and directories in the current directory.

[12]

2. ls –l: The -l option provides lots of information about the file type, owner, group, permissions, file

size, last modification date.

3. ls –x:The -x option specifies the ls command to display the files in columns.

 cp:

cp stands for copy. This command is used to copy files or group of files or directory. cp command require at

least two filenames in its arguments.

Syntax:cp Src_file Dest_file

 Options:

1. cp -i:i stands for Interactive copying. With this option system first warns the user before overwriting the

destination file. cp prompts for a response, if you press y then it overwrites the file and with any other

option leave it uncopied.

2. cp –r: With this option cp command shows its recursive behavior by copying the entire directory structure

recursively.

 mv:

mv stands for move. mv is

used to move one or more

[13]

files or directories from one place to another in file system.

Syntax:mv [Option] source destination

 rm:

rm command is used to remove objects such as files, directories, symbolic links and so on from the file

system

Syntax: rm [OPTION]... FILE...

 Options:

1.rm –r: rm will delete all the files and sub-directories recursively of the parent directory. At each stage

it deletes everything it finds. Normally, rm wouldn’t delete the directories but when used with this

option, it will delete.

 cat:

cat(concatenate) command reads data from the file and gives their content as output. It can create, view,

concatenate files.

Syntax: cat [OPTION] [FILE]...

 Options:

 1. cat –n:Toview contents of a file preceding with line numbers.

 touch: It

is used to create a file

without any content. The

file created using touch command is empty.

[14]

Syntax: touch File1_name

 Options:

 1. touch –c:Using -c option with touch command avoids creating new files.

 2.touch –m: It will update the last modification time of the file.

 3. touch -t YYMMDDHHMM.SS: creates a file with specified time other than the current time.

 clear:Itis a standard Unix computer operating system command that is used to clear the terminal screen.

 wc:

wc stands for word count, it is used to find out number of lines, word count, byte and characters count in the

files .

Syntax: wc File_name

Options:

1. wc -l : Prints the number of lines in a file.

2. wc -w : prints the number of words in a file.

3. wc -c : Displays the count of bytes in a file.

 cmp: This command is used to compare two files byte by byte.

 Syntax:cmp [OPTION]... FILE1 [FILE2 [SKIP1 [SKIP2]]]

the optional SKIP1 and SKIP2 specify the number of bytes to skip at the beginning of each file which is zero by

default and OPTION refers to the options compatible with this command.

Options:

[15]

1. cmp -b(print-bytes) : cmp displays the differing bytes in the output when used with -b option.

2. cmp -i [bytes-to-be-skipped] : Now, this option when used with cmp command helps to skipa particular

number of initial bytes from both the files and then after skipping it compares the files.

 diff:It stands for difference. This command is used to display the differences in the files by comparing the files

line by line.

Syntax:diff [options] File1 File2

 Options:

1. diff -c (context) : To view differences in context mode, use the -c option.

2. diff -u (unified) : To view differences in unified mode, use the -u option. It is similar to context mode

but it doesn’t display any redundant information or it shows the information in concise form.

 comm: It compare two sorted files line by line and write to standard output; the lines that are common and the

lines that are unique.

Syntax:comm [OPTION]... FILE1 FILE2

Options:

-1 : suppress first column(lines unique to first file).

-2 : suppress second column(lines unique to second file).

[16]

 head: prints the top N number of data of the given input.

Syntax: head [OPTION]... [FILE]...

 Options:
1. head -n num: Prints the first ‘num’ lines instead of first 10 lines.

2. head -q: It is used if more than 1 file is given. Because of this command, data from each file is not

precedes by its file name.

 tail:prints the

last N number of data of the given input.

Syntax: tail [OPTION]... [FILE]...

 Options:

[17]

1. tail -n num: Prints the last ‘num’ lines instead of last 10 lines.

2. tail -q: It is used if more than 1 file is given. Because of this command, data from each file is not precedes
by its file name.

 cut:It can be used to cut parts of a line by byte position, character and field.

Syntax:cut OPTION... [FILE]...

 Options:
cut -f (field):To extract the useful information you need to cut by fields rather than columns. List of the

fields number specified must be separated by comma. Ranges are not described with -f option.
cut -b(byte): To extract the specific bytes, you need to follow -b option with the list of byte numbers

separated by comma. Range of bytes can also be specified using the hyphen(-).

 paste:It is used to join files horizontally by outputting lines consisting of lines from each file specified,

separated by tab as delimiter, to the standard output.

Syntax:paste [OPTION]... [FILES]...

 Options:

[18]

1. paste -s (serial): We can merge the files in sequentially manner using the -s option. It reads all the lines

from a single file and merges all these lines into a single line with each line separated by tab.

2. paste -d (delimiter): Paste command uses the tab delimiter by default for merging the files.

 sort: sorts the contents of a text file, line by line.

Syntax: sort [options] [files]

 Options:

 1. sort –r: sorts the input file in reverse order i.e. descending order by default.

 2.sort -c: This option is used to check if the file given is already sorted or not.

 uniq: It is a command line utility that reports or filters out the repeated lines in a file.

Syntax: uniq [OPTION] [INPUT[OUTPUT]]

Options:
uniq -c: It tells how many times a line was repeated by displaying a number as a prefix with the line.

[19]

[20]

2. To use file permissions.

Aim: To implement file permissions

Description:

File Permissions:

Every file and directory in your UNIX system has following 3 permissions defined for the user, group and others.

 Read:This permission gives you the authority to open and read a file. Read permission on a directory gives you the

ability to lists its content.
 Write:The write permission gives you the authority to modify the contents of a file. The write permission on a

directory gives you the authority to add, remove and rename files stored in the directory.
 Execute:In Unix/Linux, you cannot run a program unless the execute permission is set. If the execute permission

is not set, you might still be able to see/modify the program code (provided read & write permissions are set), but

not run it.

'chmod' command which stands for 'change mode' can set permissions (read, write, execute) on a file/directory for

the owner, group and the world.

Syntax:chmod permissions filename

There are 2 ways to use the command -

1. Absolute mode

2. Symbolic mode

Absolute(Numeric) Mode

In this mode, file permissions are not represented as characters but a three-digit octal number.

Output:

[21]

Symbolic Mode: In the Absolute mode, you change permissions for all 3 owners. In the symbolic mode, you can modify

permissions of a specific owner. It makes use of mathematical symbols to modify the file permissions.

Operator Description

+ Adds a permission to a file or directory

- Removes the permission

= Sets the permission and overrides the

permissions set earlier.

The various owners are represented as -

User Denotations

u user/owner

g group

o other

a all

Output:

[22]

3. To Practice on process, disk, network utilities

Process utilities:

An instance of a program is called a Process. In simple terms, any command that you give to your unix machine

starts a new process.

ps:

 ps (Process status) can be used to see/list all the running processes.

 For more information -f (full) can be used along with ps

 For a single process information, ps along with process id is used

kill:

 When invoked kill command sends a termination signal to the process being killed. We can employ sure kill

signal to forcibly terminate a process. Signal number for sure kill is 9

$ kill Pid:

Disk Utilities:

du:(Disk usuage)

du command-line utility helps you to find out the disk usage of set of files or a directory.

 Syntax: du [OPTION]... [FILE]…

[23]

df:(Disk freespace)

df command displays the amount of disk space available on the file system containing each file name argument.

 Syntax:df [OPTION]...[FILE]...

Network Utilities:

1.ifconfig: It is used to configure network interface parameters.

2.w:

w prints a summary of the current activity on the system, including what each user is doing, and their processes.

[24]

[25]

4. To practice UNIX commands on Vi Editor.

Vi Editor:The default editor that comes with the UNIX operating system is called vi (visual editor). Using vi editor,

we can edit an existing file or create a new file. We can also use this editor to just read a text file.

 Syntax: vi filename

$vi praneetha1

To work on VI editor, you need to understand its operation modes. They can be divided into two main parts.

1.Command mode:

The vi editor opens in this mode, and it only understands commands

 In this mode, you can, move the cursor and cut, copy, paste the text

 This mode also saves the changes you have made to the file

 Commands are case sensitive. You should use the right letter case.

2. Insert mode:

 This mode is for inserting text in the file.

 You can switch to the Insert mode from the command mode by pressing 'i' on the keyboard

 Once you are in Insert mode, any key would be taken as an input for the file on which you are currently working.

 To return to the command mode and save the changes you have made you need to press the Esc key

[26]

vi Editing commands:

Note: You should be in the "command mode" to execute these commands. VI editor is case- sensitive so make

sure you type the commands in the right letter-case.

To Exit vi:

 :x<Return> quit vi, writing out modified file to file named in original invocation

 :wq<Return> quit vi, writing out modified file to file named in original invocation

 :q<Return> quit (or exit) vi

Inserting or Adding Text:

 i Insert text before cursor, until <Esc> hit

 I insert text at beginning of current line, until <Esc> hit

 a append text after cursor, until <Esc> hit

 A append text to end of current line, until <Esc> hit

 o open and put text in a new line below current line, until <Esc> hit

 O open and put text in a new line above current line, until <Esc> hit

Changing Text:

 r replace single character under cursor (no <Esc> needed)

 R replace characters, starting with current cursor position, until <Esc> hit

 cw
change the current word with new text,

starting with the character under cursor, until <Esc> hit

 C change (replace) the characters in the current line, until <Esc> hit

 cc change (replace) the entire current line, stopping when <Esc> is hit

Deleting Text:

 x delete single character under cursor

[27]

 dw delete the single word beginning with character under cursor

 D delete the remainder of the line, starting with current cursor position

 dd delete entire current line

Output:

Practice remaining commands in experiment1 on vi editor

[28]

5. Write a shell script to print the factorial of first n natural numbers.

Aim: To print the factorial of first n natural numbers.

 Program:

echo "enter range"

read n

i=1

while [$i -le $n]

do

j=1 fact=1

while [$j -le $i]

do

fact=`expr $fact * $j`

j=`expr $j + 1`

done

echo factorial of $i is: $fact

i=`expr $i + 1`

done

Output:

[29]

6. Write a shell script to generate a multiplication table of the given number.

Aim:To generate a multiplication table of the given number.

Description:

To display any information on the screen we can use ‘echo ‘ command . The text within the double quotes

was displayed on the screen. ‘expr’ command is used to evaluate the expression. The expression within the

symbol ‘ ‘ is evaluated by using the expr command $variable gives the value of the variable it contained expr

command combines two functions perfumes arithmetic operations on integers manipulate strings

The operand +,-, * etc.., must be enclosed on either side by white space.

 Program:

echo "which number to generate multiplication table"

read number

i=1

while [$i -le 10]

do

echo " $number * $i =`expr $number * $i ` "

i=`expr $i + 1`

done

Output:

[30]

7. Write a shell script that counts the number of lines and words present in a given file.

 Aim:To counts the number of lines and words present in a given file.

 Description: wc command is used to display the number of characters, words, lines in a given file. “|” inputs

the output of file content to wc.

 Program:

echo Enter the filename

read file

w=`cat $file | wc -w`

c=`cat $file | wc -c`

l=`cat $file | wc -l`

echo Number of characters in $file is $c

echo Number of words in $file is $w

echo Number of lines in $file is $l

[31]

8. Write a shell script that displays the list of all files in the given directory.

 Aim:To display the list of all files in the given directory

Program:

echo directory

read d

for file in $d

do

if [-d $file]

then

ls $file

fi

done

[32]

9. Write a shell script (small calculator) that adds, subtracts, multiplies and divides the given two integers.

There are two division options: one returns the quotient and the other returns reminder. The script requires 3

arguments: The operation to be used and two integer numbers. The options are add (-a), subtract (-s),

multiply (-m), quotient (-c) and reminder (-r).

 Program:

echo "enter first value"

read x

echo "Enter Second Value "

read y

while [${q:-1} -ne 0]

do

echo "Enter -a for adding"

echo "Enter -s for subtraction"

echo "Enter -m for multiplication"

echo "Enter -c for Quotient"

echo "Enter -r for reminder"

echo choice

read b

case $b in

-a) p=`expr $x + $y`

echo "Sum = $p"

;;

-s) p=`expr $x - $y`

echo "difference = $p"

;;

-m) p=`expr $x * $y`

echo "Product = $p"

;;

-c) p=`expr $x / $y`

echo "quotient = $p"

;;

-r) p=`expr $x % $y`

echo "reminder = $p"

;;

*) echo "none"

break

[33]

;;

esac

done

Output:

[34]

10. Write a program that takes one or more file/directory names as command line input and reports the following

information on the file: File type, Number of links, Time of last access, Read, Write and Execute

permissions.

 Program:

#include<stdio.h>

#include<unistd.h>
#include<dirent.h>

#include<fcntl.h>

#include<sys/stat.h>

#include<sys/types.h>
#include<time.h>

int main(int argc,char *argv[])

{
char *at,*mt,*ct;

struct stat buf;

stat(argv[1],&buf);

printf("the inode no is : %ld\n",buf.st_ino);
if(S_ISDIR(buf.st_mode))

printf("it is a directory");

if(S_ISREG(buf.st_mode))
printf("it is regurlar file\n");

printf("the no of links is %ld\n",buf.st_nlink);

at=ctime(&buf.st_atime);
printf("the time of last access is %s\n",at);

mt=ctime(&buf.st_mtime);

printf("the modification time is :%s\n",mt);

ct=ctime(&buf.st_ctime);
printf("time of last change is : %s\n",ct);

if((buf.st_mode &S_IRUSR)==S_IRUSR)

printf("user has read permission\n");
if((buf.st_mode &S_IWUSR)==S_IWUSR)

printf("user has write permisssion\n");

if((buf.st_mode &S_IXUSR)==S_IXUSR)

printf("user has execute permission\n");
if((buf.st_mode &S_IRGRP)==S_IRGRP)

printf("group has read permission\n");

if((buf.st_mode &S_IWGRP)==S_IWGRP)
printf("group has write permission\n");

if((buf.st_mode &S_IXGRP)==S_IXGRP)

printf("group has execute permission\n");
if((buf.st_mode &S_IROTH)==S_IROTH)

printf("others has read permission\n");

if((buf.st_mode &S_IWOTH)==S_IWOTH)

printf("others has write permission\n");
if((buf.st_mode &S_IXOTH)==S_IXOTH)

printf("others has execute permisssion\n");

}

[35]

Output:

[36]

11. Write a C program that illustrates uses of the opendir, readdir, and closedir APIs.

 Program:

#include<stdio.h>

#include<fcntl.h>

#include<dirent.h>

#include<unistd.h>

int main()

{

char d[10];

DIR *e;

struct dirent *sd;

printf("enter dir name to open:");

scanf("%s",d);

e=opendir(d);

if(e==NULL)

printf("dir does not exist");

else

{

printf("dir exist\n");

while((sd=readdir(e))!=NULL)

{

printf("%s\t", sd->d_name);

}

closedir(e);

}

}

Output:

[37]

12. Write a C program that counts the number of blanks in a text file using standard I/O

 Program:

#include <fcntl.h>

#include <sys/stat.h>

#include <stdio.h>

int main(int argc, char **argv)

{

FILE *fd1;

int n,count=0;

char buf;

fd1=fopen(argv[1],"r");

while(!feof(fd1))

{

buf=fgetc(fd1);

if(buf=='')

count=count+1;

}

printf("\n Total Blanks= %d",count);

return (0);

}

Output:

[38]

13. Implement in C, Unix command ‘cat’ using system calls.

 Program:

#include<fcntl.h>

#include<sys/stat.h>

#include<stdio.h>

#include<unistd.h>

#define BUFSIZE 1

int main(int argc, char **argv)

{

int fd1;

int n;

char buf;

fd1=open(argv[1],O_RDONLY);

printf("displays file contents\n");

while((n=read(fd1,&buf,1))>0)

{

write(1,&buf,1);

}

return (0);

}

Output:

[39]

14. Write a C program that illustrates the creation of child process using fork system call.

 Program:

#include<stdio.h>

#include<stdlib.h>

#include<sys/types.h>

#include<unistd.h>

int main(int argc,char *argv[])

{

printf("i am :%d\n",(int) getpid());

pid_t pid=fork();

printf("fork returned:%d\n", (int) pid);

printf("i am:%d\n",(int)getpid());

return 0;

}

output:

[40]

15. Write a C program that illustrates how to execute two commands concurrently with a

command pipe.

 Program:

#include<stdio.h>

#include<fcntl.h>

#include<unistd.h>

#include<sys/types.h>

int main()

{

int pfd[2],p;

pipe(pfd);

p=fork();

if(p==0)//for child

{

close(pfd[0]);

close(1);

dup(pfd[1]);

execlp("who","who", (char *)0);

}

else

{

close(pfd[1]);

close(0);

dup(pfd[0]);

execlp("wc","wc",(char *)0);

}

}

output:

[41]

16. Write a C program to implement the Kill function.

 Program:

#include<signal.h>

#include<stdio.h>

#include<unistd.h>

void xyz(int n)

{

printf("hello: %d\n", getpid());

signal(2,xyz);

}

void pqr(int n)

{

printf("from pqr:%d\n",getpid());

}

int main()

{

signal(2,xyz);

if(fork()==0)

{

signal(2,pqr);

kill(0,2);

}

while(1)

return 0;

}

Output:

[42]

17.Write a C program to implement the raise function.

 Program:

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

void signal_handler(int signal)

{

/* Display a message indicating we have received a signal */

if (signal == SIGUSR1)

printf("Received a SIGUSR1 signal\n");

/* Exit the application */

exit(0);

}

int main(int argc, const char * argv[])

{

/* Display a message indicating we are registering the signal handler */

printf("Registering the signal handler\n");

/* Register the signal handler */

signal(SIGUSR1, signal_handler);

/* Display a message indicating we are raising a signal */

printf("Raising a SIGUSR1 signal\n");

/* Raise the SIGUSR1 signal */

raise(SIGUSR1);

/* Display a message indicating we are leaving main */

printf("Finished main\n");

return 0;

}

Output:

[43]

18. Write a C program that displays the real time of a day every 60 seconds.

 Program:

#include<stdio.h>

 #include<sys/time.h>

 #include<sys/signal.h>

#include<unistd.h>

/* Declarations */

 void main();

 int times_up();

 void main()

 {

 for (; ;)

{

 times_up(1);

sleep(60);

}

 }

int times_up(sig)

 int sig;

 {

 long now;

 struct tms *ptr;

 long time();

 char *ctime();

time(&now);

 printf("It is now %s\n", ctime (&now));

return (sig);

 }

Output:

[44]

Additional Programs:

1. Write a shell script to display files which has read, write and execute permissions.

Program:

echo “enter a filename”

read f

for f in `ls`
do

if [-w $f –a -r $f –a –x $f]

then
echo $f

fi

done

2. Write a shell script to display the biggest number in given input numbers.

Program:

echo “enter a num”

read num

if [$1 –ge $2]

then

if [$1 –ge $3]

then

echo $1 “is biggest num”

else

echo $3 “is biggest num”

fi

elif [$2 –ge $3]
then

echo $2 “is bigger num”

else

echo “Biggest num is “ $3

fi

3. Write a C program that illustrates the creation of child process using fork system call. One process finds sum
of even series and other process finds sum of odd series.

Program:

#include <stdio.h>
#include <sys/types.h>

#include <unistd.h>

#include <fcntl.h>

int main()
{

int i,n,sum=0;

pid_t pid;
system(“clear”);

printf(“Enter n value:”);

scanf(“%d”,&n)
pid=fork();

if(pid==0)

{

printf(“From child process\n”);
for(i=1;i<n;i+=2)

{

printf(“%d\”,i);

[45]

sum+=i;
}

printf(“Odd sum:%d\n”,sum);

}

else
{

printf(“From process\n”);

for(i=0;i<n;i+=2)
{

printf(“%d\”,i);

sum+=i;
}

printf(“Even sum:%d\n”,sum);

}

}

	Symbolic Mode: In the Absolute mode, you change permissions for all 3 owners. In the symbolic mode, you can modify permissions of a specific owner. It makes use of mathematical symbols to modify the file permissions.
	2. Insert mode:
	To Exit vi:
	Inserting or Adding Text:
	Changing Text:
	Deleting Text:
	Output:

